

Welcome to the FPGA Interface Python API’s documentation!

The National Instruments FPGA Interface Python API is used for communication between processor and FPGA within NI reconfigurable I/O (RIO) hardware such as NI CompactRIO, NI Single-Board RIO, NI FlexRIO, and NI R Series multifunction RIO.

With the FPGA Interface Python API, developers can use LabVIEW FPGA to program the FPGA within NI hardware and communicate to it from Python running on a host computer. This gives engineers and scientists with Python expertise the ability to take advantage of compiled LabVIEW FPGA bitfiles, also the option to reuse existing Python code.

	Info

	Python API for interacting with LabVIEW FPGA Devices. See our GitHub [https://github.com/ni/nifpga-python/].

	Author

	National Instruments

	Maintainers

	Michael Strain <Michael.Strain@ni.com>, Mose Gumble <mose.gumble@ni.com>

About

The nifpga package contains an API for interacting with National Instrument’s
LabVIEW FPGA Devices - from Python. This package was created and is officially
supported by National Instruments.

nifpga supports versions 16.0 and later of the RIO driver.

Some functions in the nifpga package may be unavailable with earlier
versions of your RIO driver. Visit the
National Instruments downloads page [http://www.ni.com/downloads/] to
upgrade the appropriate RIO device driver for your hardware.

nifpga supports Windows and Linux operating systems.

nifpga supports Python 2.7, 3.4+ . nifpga will likely work on other Python implementations. Feel free to open a issue on github for supporting a new implementation.

Bugs / Feature Requests

To report a bug or submit a feature request, please use our
GitHub issues page [https://github.com/ni/nifpga-python/issues] to open a
new issue.

Information to Include When Asking For Help

Please include all of the following information when opening an issue:

	Detailed steps on how to reproduce the problem, and full traceback (if
applicable).

	The exact python version used:

$ python -c "import sys; print(sys.version)"

	The exact versions of packages used:

$ python -m pip list

	The exact version of the RIO driver used. Follow
this KB article [http://digital.ni.com/public.nsf/allkb/2266B58A5061E86A8625758C007A4FE3]
to determine the RIO driver you have installed.

	The operating system and version (e.g. Windows 7, CentOS 7.2, …)

Additional Documentation

If you are unfamiliar with LabVIEW FPGA module, perusing the
LabVIEW FPGA Module [http://www.ni.com/labview/fpga/]
resource is a great way to get started. This documentation is API-agnostic.

License

nifpga is licensed under an MIT-style license (see LICENSE). Other
incorporated projects may be licensed under different licenses. All licenses
allow for non-commercial and commercial use.

User Documentation

	Getting Started
	Installation
	Windows

	Desktop Linux

	NI Linux RT

	Basic Examples
	Opening a Session

	Using Controls and Indicators

	Using Array Controls and Indicators

	Using FIFOs

	Using IRQs

	API References
	Sessions

	Registers

	Array Registers

	FIFOs

	Status

	Examples
	Basic Examples
	Opening a Session

	Using Controls and Indicators

	Using Array Controls and Indicators

	Using FIFOs

	Using IRQs

Indices and Tables

	Index

	Module Index

	Search Page

Getting Started

This document will show you how to get up and running with the NI FPGA Interface
Python API.

User Documentation

	Installation
	Windows

	Desktop Linux

	NI Linux RT

	Basic Examples
	Opening a Session

	Using Controls and Indicators

	Using Array Controls and Indicators

	Using FIFOs

	Using IRQs

Installation

The NI FPGA Interface Python API can be installed through pip, see below
for more detailed instructions.

Windows

	Install the correct driver for your RIO device

	You can find drivers at http://www.ni.com/downloads/ni-drivers/

	Install Python https://www.python.org/downloads/

	Install nifpga using pip (pip will be installed under “Scripts” in your python installation location.

pip install nifpga

Desktop Linux

	Install the correct driver for your RIO device

	You can find drivers at http://www.ni.com/downloads/ni-drivers/

	Use your package manager to install the “python-pip” package

	Install nifpga using pip

pip install nifpga

NI Linux RT

	Install the driver for your device using NI MAX

	Enable SSH or the serial console from NI MAX

	Connect to SSH or the serial console and login as admin

	Run the following commands

opkg update
opkg install python3 python3-misc
follow the latest instructions to install pip:
https://pip.pypa.io/en/stable/installing/
python3 -m pip install nifpga

Basic Examples

Opening a Session

The FPGA Interface Python API is session based. LabVIEW FPGA will generate bitfiles (.lvbitx) that can be used to program the hardware. For additional information on sessions view the API Page Sessions.

Recommended usage is to open a Session as follows:

from nifpga import Session

with Session(bitfile="MyBitfile.lvbitx", resource="RIO0") as session:
 # Reset stops the logic on the FPGA and puts it in the default state.
 # May substitute reset with download if your bitfile doesn't support it.
 session.reset()

 # Add Initialization code here!
 # Write initial values to controls while the FPGA logic is stopped.

 # Start the logic on the FPGA
 session.run()

 # Add code that interacts with the FPGA while it is running here!

Using Controls and Indicators

Controls and indicators are used to transmit small amounts of data to and from the FPGA. The controls and indicators accessible by the FPGA Interface Python API are from the front panel of the top level VI from the LabVIEW FPGA code that was built into the bitfile. Accessing a control or indicator is done via its unique name from Sessions’s register property. For additional information on controls and indicators view the API page Registers.

The following example uses this FPGA VI:

[image: ../_images/controlsAndIndicators1.png]
This VI will take in a value from MyControl, square it, and output it to MyIndicator.

Example Usage:

from nifpga import Session

with Session("MyBitfile.lvbitx", "RIO0") as session:
 my_control = session.registers['My Control']
 my_indicator = session.registers['My Indicator']
 my_control.write(4)
 data = my_indicator.read()
 print(data) # prints 16

Using Array Controls and Indicators

Controls and indicators can also be an array type. They work like the a non-array registers, except use a python list [https://docs.python.org/2/tutorial/datastructures.html] for reading and writing. Accessing an array control or indicator is done via its unique name from Sessions’s register property, all controls and indicators exist in this dictionary. For additional information on array controls and indicators view the API page Array Registers.

For the following example, we have added two arrays to our FPGA VI:

[image: ../_images/controlsAndIndicators2.png]
Example Usage:

from nifpga import Session

with Session("MyBitfile.lvbitx", "RIO0") as session:
 my_array_control = session.registers['My Array Control']
 my_array_indicator = session.registers['My Array Indicator']

 data = [0, 1, 2, 3, 4]
 my_array_control.write(data)
 print(my_array_indicator.read()) # prints [0, 1, 4, 9, 16]

Using FIFOs

FIFOs are used for streaming data to and from the FPGA. A FIFO is accessible by the FPGA Interface Python API via the top level VI from LabVIEW FPGA code. For additional information on FIFOs view the API page FIFOs.

For the following example, we have made a VI with two FIFOs. One FIFO is a host to target FIFO and the other is target to host FIFO. This VI uses the FIFOs to stream data from the processor, to the FPGA and then back to the processor.

[image: ../_images/fifos.png]
Example Usage:

from nifpga import Session

create a list of 100 incrementing values
data = list(range(0, 100))

with Session("MyBitfile.lvbitx", "RIO0") as session:
 host_to_target = session.fifos['Host To Target Fifo']
 target_to_host = session.fifos['Target To Host Fifo']
 host_to_target.start()
 target_to_host.start()

 # stream the data to the FPGA
 host_to_target.write(data, timeout_ms=100)
 # steam the data back to the processor
 read_value = target_to_host.read(100, timeout_ms=100)
 # read_value is a tuple containing the data and elements remaining
 print(read_value.elements_remaining) # prints 0

 # loop over both lists and print if the data doesn't match
 for input_data, output_data in zip(data, read_value.data):
 if input_data != output_data:
 print("data error")

Using IRQs

IRQs are used to generate and handle user interrupts occurring on the FPGA. IRQs are accessible through the Sessions class. IRQs have two methods Session.wait_on_irqs(irqs, timeout_ms)() and Session.acknowledge_irqs(irqs)().

For the following example, we have made a VI with an IRQ in a loop. This will fire IRQ 1 continuously and block the loop until the user acknowledges the IRQ.

[image: ../_images/irqs.png]
Example Usage:

from nifpga import Session

timeout_ms = 300
irq_1 = 1

with Session("MyBitfile.lvbitx", "RIO0") as session:
 loop_count = session.registers["IRQ Loop Count"]

 # Wait on irq_1
 irq_status = session.wait_on_irqs(irq_1, timeout_ms)
 if irq_status.timed_out is True:
 print("timeout out while waiting for the interrupt")

 # Check to see if irq 1 asserted
 if irq_1 in irq_status.irqs_asserted:
 print("1 was asserted")
 else:
 print("1 was not asserted")

 # Print the loop count before and after acknowledging the irq
 print("Initial loop count:")
 print(loop_count.read())
 # Acknowledge the IRQ(s) when we're done
 session.acknowledge_irqs(irq_status.irqs_asserted)

 # Wait for the IRQ to fire again
 session.wait_on_irqs(irq_1, timeout_ms)
 # Print the loop count again to see its been incremented once
 print("Loop count after acknowledge:")
 print(loop_count.read())

API References

Table of Contents:

	Sessions

	Registers

	Array Registers

	FIFOs

	Status

Sessions

	
class nifpga.session.Session(bitfile, resource, no_run=False, reset_if_last_session_on_exit=False, **kwargs)

	Session, a convenient wrapper around the low-level _NiFpga class.

The Session class uses regular python types, provides convenient default
arguments to C API functions, and makes controls, indicators, and FIFOs
available by name. If any NiFpga function return status is non-zero, the
appropriate exception derived from either WarningStatus or ErrorStatus is
raised.
Example usage of FPGA configuration functions:

with Session(bitfile="myBitfilePath.lvbitx", resource="RIO0") as session:
 session.run()
 session.download()
 session.abort()
 session.reset()

Note

It is always recommended that you use a Session with a context manager
(with). Opening a Session without a context manager could cause you to
leak the session if Session.close() is not called.

Controls and indicators are accessed directly via a _Register object
obtained from the session:

my_control = session.registers["MyControl"]
my_control.write(data=4)
data = my_control.read()

FIFOs are accessed directly via a _FIFO object obtained from the session:

myHostToFpgaFifo = session.fifos["MyHostToFpgaFifo"]
myHostToFpgaFifo.stop()
actual_depth = myHostToFpgaFifo.configure(requested_depth=4096)
myHostToFpgaFifo.start()
empty_elements_remaining = myHostToFpgaFifo.write(data=[1, 2, 3, 4],
 timeout_ms=2)

myFpgaToHostFifo = session.fifos["MyHostToFpgaFifo"]
read_values = myFpgaToHostFifo.read(number_of_elements=4,
 timeout_ms=0)
print(read_values.data)

	
class WaitOnIrqsReturnValues(irqs_asserted, timed_out)

	
	
irqs_asserted

	Alias for field number 0

	
timed_out

	Alias for field number 1

	
__init__(bitfile, resource, no_run=False, reset_if_last_session_on_exit=False, **kwargs)

	Creates a session to the specified resource with the specified
bitfile.

	Parameters

	
	bitfile (str)(Bitfile) – A bitfile.Bitfile() instance or a string
filepath to a bitfile.

	resource (str) – e.g. “RIO0”, “PXI1Slot2”, or “rio://hostname/RIO0”
or an already open session

	no_run (bool) – If true, don’t run the bitfile, just open the
session.

	reset_if_last_session_on_exit (bool) – Passed into Close on
exit. Unused if not using this session as a context guard.

	**kwargs – Additional arguments that edit the session.

	
abort()

	Aborts the FPGA VI.

	
acknowledge_irqs(irqs)

	Acknowledges an IRQ or set of IRQs.

	Parameters

	irqs (list) – A list of irq ordinals 0-31, e.g. [0, 6, 31].

	
close(reset_if_last_session=False)

	Closes the FPGA Session.

	Parameters

	reset_if_last_session (bool) – If True, resets the FPGA on the
last close. If true, does not reset the FPGA on the last
session close.

	
download()

	Re-downloads the FPGA bitstream to the target.

	
fifos

	This property returns a dictionary containing all FIFOs that are
associated with the bitfile opened with the session. A FIFO can be
accessed by its unique name.

	
fpga_vi_state

	Returns the current state of the FPGA VI.

	
registers

	This property returns a dictionary containing all registers that
are associated with the bitfile opened with the session. A register can
be accessed by its unique name.

	
reset()

	Resets the FPGA VI.

	
run(wait_until_done=False)

	Runs the FPGA VI on the target.

	Parameters

	wait_until_done (bool) – If true, this functions blocks until the
FPGA VI stops running

	
wait_on_irqs(irqs, timeout_ms)

	Stops the calling thread until the FPGA asserts any IRQ in the irqs
parameter or until the function call times out.

	Parameters

	
	irqs – A list of irq ordinals 0-31, e.g. [0, 6, 31].

	timeout_ms – The timeout to wait in milliseconds.

	Returns

	session_wait_on_irqs (namedtuple):

session_wait_on_irqs.irqs_asserted (list): is a list of the
 asserted IRQs.
session_wait_on_irqs.timed_out (bool): Outputs whether or not
 the time out expired before all irqs were asserted.

Registers

	
class nifpga.session._Register(session, nifpga, bitfile_register, base_address_on_device, read_func=None, write_func=None)

	Bases: object

_Register is a private class that is a wrapper of logic that is
associated with controls and indicators.

All Registers will exists in a sessions session.registers property. This
means that all possible registers for a given session are created during
session initialization; a user should never need to create a new instance
of this class.

	
__len__()

	A single register will always have one and only one element.

	Returns

	Always a constant 1.

	Return type

	(int)

	
datatype

	Property of a register that returns the datatype of the control or
indicator.

	
name

	Property of a register that returns the name of the control or
indicator.

	
read()

	Reads a single element from the control or indicator

	Returns

	The data inside the register.

	Return type

	data (DataType.value)

	
write(data)

	Writes the specified data to the control or indicator

	Parameters

	data (DataType.value) – The data to be written into the register

Array Registers

	
class nifpga.session._ArrayRegister(session, nifpga, bitfile_register, base_address_on_device)

	Bases: nifpga.session._Register

_ArryRegister is a private class that inherits from _Register with
additional interfaces unique to the logic of array controls and indicators.

	
__len__()

	Returns the length of the array.

	Returns

	The number of elements in the array.

	Return type

	(int)

	
datatype

	Property of a register that returns the datatype of the control or
indicator.

	
name

	Property of a register that returns the name of the control or
indicator.

	
read()

	Reads the entire array from the control or indicator.

	Returns

	The data in the register in a python list.

	Return type

	(list)

	
write(data)

	Writes the specified array of data to the control or indicator

	Parameters

	
	data (list) – The data “array” to be written into the registers

	into a python list. (wrapped) –

FIFOs

	
class nifpga.session._FIFO(session, nifpga, bitfile_fifo, datatype=None)

	Bases: object

_FIFO is a private class that is a wrapper for the logic that
associated with a FIFO.

All FIFOs will exists in a sessions session.fifos property. This means that
all possible FIFOs for a given session are created during session
initialization; a user should never need to create a new instance of this
class.

	
class AcquireReadValues(data, elements_acquired, elements_remaining)

	Bases: tuple

	
data

	Alias for field number 0

	
elements_acquired

	Alias for field number 1

	
elements_remaining

	Alias for field number 2

	
class AcquireWriteValues(data, elements_acquired, elements_remaining)

	Bases: tuple

	
data

	Alias for field number 0

	
elements_acquired

	Alias for field number 1

	
elements_remaining

	Alias for field number 2

	
class ReadValues(data, elements_remaining)

	Bases: tuple

	
data

	Alias for field number 0

	
elements_remaining

	Alias for field number 1

	
buffer_allocation_granularity

	The allocation granularity of the host memory part of a DMA FIFO.

By default this will usually be a page size, which is optimal for most
devices. This property can be used to customize it.

	
buffer_size

	The size in elements of the Host Memory part of a DMA FIFO.

	
commit_configuration()

	Resolves and Commits property changes made to the FIFO.

	
configure(requested_depth)

	Specifies the depth of the host memory part of the DMA FIFO.

	Parameters

	requested_depth (int) – The depth of the host memory part of the DMA
FIFO in number of elements.

	Returns

	The actual number of elements in the host
memory part of the DMA FIFO, which may be more than the
requested number.

	Return type

	actual_depth (int)

	
datatype

	Property of a Fifo that contains its datatype.

	
flow_control

	Controls whether the FPGA will wait for the host when using FIFOs.

If flow control is disabled, the FPGA will have free reign to read or
write elements before the host is ready. This means the FIFO no longer
acts in a First In First Out manner.

For Host To Target FIFOs, this feature is useful when you want to put
something like a waveform in a FIFO and let the FPGA continue reading
that waveform over and over without any involvement from the host.

For Target To Host FIFOs, this feature is useful when you only care
about the latest data and don’t care about old data.

	
get_peer_to_peer_endpoint()

	Gets an endpoint reference to a peer-to-peer FIFO.

	
name

	Property of a Fifo that contains its name.

	
read(number_of_elements, timeout_ms=0)

	Read the specified number of elements from the FIFO.

Note

If the FIFO has not been started before calling
_FIFO.read(), then it will automatically start and continue
to work as expected.

	Parameters

	
	number_of_elements (int) – The number of elements to read from the
FIFO.

	timeout_ms (int) – The timeout to wait in milliseconds.

	Returns

	ReadValues (namedtuple):

ReadValues.data (list): containing the data from
 the FIFO.
ReadValues.elements_remaining (int): The amount of elements
 remaining in the FIFO.

	
start()

	Starts the FIFO.

	
stop()

	Stops the FIFO.

	
write(data, timeout_ms=0)

	Writes the specified data to the FIFO.

Note

If the FIFO has not been started before calling
_FIFO.write(), then it will automatically start and
continue to work as expected.

	Parameters

	
	data (list) – Data to be written to the FIFO.

	timeout_ms (int) – The timeout to wait in milliseconds.

	Returns

	The number of elements remaining in the
host memory part of the DMA FIFO.

	Return type

	elements_remaining (int)

Status

	
class nifpga.status.Status(code, code_string, function_name, argument_names, function_args)

	Bases: exceptions.BaseException

	
__init__(code, code_string, function_name, argument_names, function_args)

	Base exception class for when an NiFpga function returns a non-zero
status.

	Parameters

	
	code (int) – e.g. -52000

	code_string (str) – e.g. ‘MemoryFull’

	function_name (string) – the function that returned the error or
warning status. e.g. ‘NiFpga_ConfigureFifo’

	argument_names (list) – a list of the names of the arguments to the
function. e.g. [“session”, “fifo”, “requested depth”]

	function_args (tuple) – a tuple of the arguments passed to the
function. The order of argument_names should correspond to the
order of function_args. e.g. ‘(session, fifo, depth)’

	
__str__()

	Returns the function name, status code, and arguments used.
Example:

Error: FifoTimeout (-50400) when calling 'Dummy Function Name' with
arguments:
 session: 0xbeef
 fifo: 0xf1f0L
 data: 0xda7aL
 number of elements: 0x100L
 timeout ms: 0x200L
 elements remaining: 0x300L
 a bogus string argument: 'I am a string'

	
get_args()

	Returns a dictionary of argument names to argument values of
the function that caused the exception to be raised.

Returns:
arg_dict (dictionary): Converts ctypes args to their actual values
instead of the ctypes instance. e.g.

{
"session":0x10000L,
"fifo" : 0x0,
...}

	
get_function_name()

	Returns a string for the functions name,

	
class nifpga.status.WarningStatus(code, code_string, function_name, argument_names, function_args)

	Bases: nifpga.status.Status, exceptions.RuntimeWarning

Base warning class for when an NiFpga function returns a warning (> 0)
status.

Useful if trying to catch warning and error status exceptions separately

	
class nifpga.status.ErrorStatus(code, code_string, function_name, argument_names, function_args)

	Bases: nifpga.status.Status, exceptions.RuntimeError

Base Error class for when an NiFpga function returns an error (< 0)
status.

Useful if trying to catch warning and error status exceptions separately

Examples

This Section will go different snippets of example code using the FPGA Interface python API to accomplish different tasks. Use the following links to navigate to the examples.

Table of Contents:

	Basic Examples
	Opening a Session

	Using Controls and Indicators

	Using Array Controls and Indicators

	Using FIFOs

	Using IRQs

Basic Examples

Opening a Session

The FPGA Interface Python API is session based. LabVIEW FPGA will generate bitfiles (.lvbitx) that can be used to program the hardware. For additional information on sessions view the API Page Sessions.

Recommended usage is to open a Session as follows:

from nifpga import Session

with Session(bitfile="MyBitfile.lvbitx", resource="RIO0") as session:
 # Reset stops the logic on the FPGA and puts it in the default state.
 # May substitute reset with download if your bitfile doesn't support it.
 session.reset()

 # Add Initialization code here!
 # Write initial values to controls while the FPGA logic is stopped.

 # Start the logic on the FPGA
 session.run()

 # Add code that interacts with the FPGA while it is running here!

Using Controls and Indicators

Controls and indicators are used to transmit small amounts of data to and from the FPGA. The controls and indicators accessible by the FPGA Interface Python API are from the front panel of the top level VI from the LabVIEW FPGA code that was built into the bitfile. Accessing a control or indicator is done via its unique name from Sessions’s register property. For additional information on controls and indicators view the API page Registers.

The following example uses this FPGA VI:

[image: ../_images/controlsAndIndicators1.png]
This VI will take in a value from MyControl, square it, and output it to MyIndicator.

Example Usage:

from nifpga import Session

with Session("MyBitfile.lvbitx", "RIO0") as session:
 my_control = session.registers['My Control']
 my_indicator = session.registers['My Indicator']
 my_control.write(4)
 data = my_indicator.read()
 print(data) # prints 16

Using Array Controls and Indicators

Controls and indicators can also be an array type. They work like the a non-array registers, except use a python list [https://docs.python.org/2/tutorial/datastructures.html] for reading and writing. Accessing an array control or indicator is done via its unique name from Sessions’s register property, all controls and indicators exist in this dictionary. For additional information on array controls and indicators view the API page Array Registers.

For the following example, we have added two arrays to our FPGA VI:

[image: ../_images/controlsAndIndicators2.png]
Example Usage:

from nifpga import Session

with Session("MyBitfile.lvbitx", "RIO0") as session:
 my_array_control = session.registers['My Array Control']
 my_array_indicator = session.registers['My Array Indicator']

 data = [0, 1, 2, 3, 4]
 my_array_control.write(data)
 print(my_array_indicator.read()) # prints [0, 1, 4, 9, 16]

Using FIFOs

FIFOs are used for streaming data to and from the FPGA. A FIFO is accessible by the FPGA Interface Python API via the top level VI from LabVIEW FPGA code. For additional information on FIFOs view the API page FIFOs.

For the following example, we have made a VI with two FIFOs. One FIFO is a host to target FIFO and the other is target to host FIFO. This VI uses the FIFOs to stream data from the processor, to the FPGA and then back to the processor.

[image: ../_images/fifos.png]
Example Usage:

from nifpga import Session

create a list of 100 incrementing values
data = list(range(0, 100))

with Session("MyBitfile.lvbitx", "RIO0") as session:
 host_to_target = session.fifos['Host To Target Fifo']
 target_to_host = session.fifos['Target To Host Fifo']
 host_to_target.start()
 target_to_host.start()

 # stream the data to the FPGA
 host_to_target.write(data, timeout_ms=100)
 # steam the data back to the processor
 read_value = target_to_host.read(100, timeout_ms=100)
 # read_value is a tuple containing the data and elements remaining
 print(read_value.elements_remaining) # prints 0

 # loop over both lists and print if the data doesn't match
 for input_data, output_data in zip(data, read_value.data):
 if input_data != output_data:
 print("data error")

Using IRQs

IRQs are used to generate and handle user interrupts occurring on the FPGA. IRQs are accessible through the Sessions class. IRQs have two methods Session.wait_on_irqs(irqs, timeout_ms)() and Session.acknowledge_irqs(irqs)().

For the following example, we have made a VI with an IRQ in a loop. This will fire IRQ 1 continuously and block the loop until the user acknowledges the IRQ.

[image: ../_images/irqs.png]
Example Usage:

from nifpga import Session

timeout_ms = 300
irq_1 = 1

with Session("MyBitfile.lvbitx", "RIO0") as session:
 loop_count = session.registers["IRQ Loop Count"]

 # Wait on irq_1
 irq_status = session.wait_on_irqs(irq_1, timeout_ms)
 if irq_status.timed_out is True:
 print("timeout out while waiting for the interrupt")

 # Check to see if irq 1 asserted
 if irq_1 in irq_status.irqs_asserted:
 print("1 was asserted")
 else:
 print("1 was not asserted")

 # Print the loop count before and after acknowledging the irq
 print("Initial loop count:")
 print(loop_count.read())
 # Acknowledge the IRQ(s) when we're done
 session.acknowledge_irqs(irq_status.irqs_asserted)

 # Wait for the IRQ to fire again
 session.wait_on_irqs(irq_1, timeout_ms)
 # Print the loop count again to see its been incremented once
 print("Loop count after acknowledge:")
 print(loop_count.read())

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | N
 | R
 | S
 | T
 | W

_

 	
 	__init__() (nifpga.session.Session method)

 	(nifpga.status.Status method)

 	__len__() (nifpga.session._ArrayRegister method)

 	(nifpga.session._Register method)

 	__str__() (nifpga.status.Status method)

 	
 	_ArrayRegister (class in nifpga.session)

 	_FIFO (class in nifpga.session)

 	_FIFO.AcquireReadValues (class in nifpga.session)

 	_FIFO.AcquireWriteValues (class in nifpga.session)

 	_FIFO.ReadValues (class in nifpga.session)

 	_Register (class in nifpga.session)

A

 	
 	abort() (nifpga.session.Session method)

 	
 	acknowledge_irqs() (nifpga.session.Session method)

B

 	
 	buffer_allocation_granularity (nifpga.session._FIFO attribute)

 	
 	buffer_size (nifpga.session._FIFO attribute)

C

 	
 	close() (nifpga.session.Session method)

 	
 	commit_configuration() (nifpga.session._FIFO method)

 	configure() (nifpga.session._FIFO method)

D

 	
 	data (nifpga.session._FIFO.AcquireReadValues attribute)

 	(nifpga.session._FIFO.AcquireWriteValues attribute)

 	(nifpga.session._FIFO.ReadValues attribute)

 	
 	datatype (nifpga.session._ArrayRegister attribute)

 	(nifpga.session._FIFO attribute)

 	(nifpga.session._Register attribute)

 	download() (nifpga.session.Session method)

E

 	
 	elements_acquired (nifpga.session._FIFO.AcquireReadValues attribute)

 	(nifpga.session._FIFO.AcquireWriteValues attribute)

 	elements_remaining (nifpga.session._FIFO.AcquireReadValues attribute)

 	(nifpga.session._FIFO.AcquireWriteValues attribute)

 	(nifpga.session._FIFO.ReadValues attribute)

 	
 	ErrorStatus (class in nifpga.status)

F

 	
 	fifos (nifpga.session.Session attribute)

 	
 	flow_control (nifpga.session._FIFO attribute)

 	fpga_vi_state (nifpga.session.Session attribute)

G

 	
 	get_args() (nifpga.status.Status method)

 	
 	get_function_name() (nifpga.status.Status method)

 	get_peer_to_peer_endpoint() (nifpga.session._FIFO method)

I

 	
 	irqs_asserted (nifpga.session.Session.WaitOnIrqsReturnValues attribute)

N

 	
 	name (nifpga.session._ArrayRegister attribute)

 	(nifpga.session._FIFO attribute)

 	(nifpga.session._Register attribute)

R

 	
 	read() (nifpga.session._ArrayRegister method)

 	(nifpga.session._FIFO method)

 	(nifpga.session._Register method)

 	
 	registers (nifpga.session.Session attribute)

 	reset() (nifpga.session.Session method)

 	run() (nifpga.session.Session method)

S

 	
 	Session (class in nifpga.session)

 	Session.WaitOnIrqsReturnValues (class in nifpga.session)

 	
 	start() (nifpga.session._FIFO method)

 	Status (class in nifpga.status)

 	stop() (nifpga.session._FIFO method)

T

 	
 	timed_out (nifpga.session.Session.WaitOnIrqsReturnValues attribute)

W

 	
 	wait_on_irqs() (nifpga.session.Session method)

 	WarningStatus (class in nifpga.status)

 	
 	write() (nifpga.session._ArrayRegister method)

 	(nifpga.session._FIFO method)

 	(nifpga.session._Register method)

	Info

	Python API for interacting with LabVIEW FPGA Devices. See our GitHub [https://github.com/ni/nifpga-python/].

	Author

	National Instruments

	Maintainers

	Michael Strain <Michael.Strain@ni.com>, Mose Gumble <mose.gumble@ni.com>

About

The nifpga package contains an API for interacting with National Instrument’s
LabVIEW FPGA Devices - from Python. This package was created and is officially
supported by National Instruments.

nifpga supports versions 16.0 and later of the RIO driver.

Some functions in the nifpga package may be unavailable with earlier
versions of your RIO driver. Visit the
National Instruments downloads page [http://www.ni.com/downloads/] to
upgrade the appropriate RIO device driver for your hardware.

nifpga supports Windows and Linux operating systems.

nifpga supports Python 2.7, 3.4+ . nifpga will likely work on other Python implementations. Feel free to open a issue on github for supporting a new implementation.

Bugs / Feature Requests

To report a bug or submit a feature request, please use our
GitHub issues page [https://github.com/ni/nifpga-python/issues] to open a
new issue.

Information to Include When Asking For Help

Please include all of the following information when opening an issue:

	Detailed steps on how to reproduce the problem, and full traceback (if
applicable).

	The exact python version used:

$ python -c "import sys; print(sys.version)"

	The exact versions of packages used:

$ python -m pip list

	The exact version of the RIO driver used. Follow
this KB article [http://digital.ni.com/public.nsf/allkb/2266B58A5061E86A8625758C007A4FE3]
to determine the RIO driver you have installed.

	The operating system and version (e.g. Windows 7, CentOS 7.2, …)

Additional Documentation

If you are unfamiliar with LabVIEW FPGA module, perusing the
LabVIEW FPGA Module [http://www.ni.com/labview/fpga/]
resource is a great way to get started. This documentation is API-agnostic.

License

nifpga is licensed under an MIT-style license (see LICENSE). Other
incorporated projects may be licensed under different licenses. All licenses
allow for non-commercial and commercial use.

 _static/comment-bright.png

_images/irqs.png
IRQ Loop Count
prsz]]

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_images/controlsAndIndicators1.png

_images/controlsAndIndicators2.png
My Arvay Control My Array Tndicator

_images/fifos.png
[¥ o Host To Target Fifo 4l

[¥ o Target To Host Fifo 41k

Read

e

Element

Element

Tineaut

mr

Tineaut

Tined OuE?

Tined OuE?

_static/minus.png

nav.xhtml

 Table of Contents

 		
 Welcome to the FPGA Interface Python API’s documentation!

 		
 Getting Started

 		
 Installation

 		
 Windows

 		
 Desktop Linux

 		
 NI Linux RT

 		
 Basic Examples

 		
 Opening a Session

 		
 Using Controls and Indicators

 		
 Using Array Controls and Indicators

 		
 Using FIFOs

 		
 Using IRQs

 		
 API References

 		
 Sessions

 		
 Registers

 		
 Array Registers

 		
 FIFOs

 		
 Status

 		
 Examples

 		
 Basic Examples

 		
 Opening a Session

 		
 Using Controls and Indicators

 		
 Using Array Controls and Indicators

 		
 Using FIFOs

 		
 Using IRQs

_static/up-pressed.png

_static/up.png

_static/plus.png

